Improving the Enzymatic Cascade of Reactions for the Reduction of CO2 to CH3OH in Water: From Enzymes Immobilization Strategies to Cofactor Regeneration and Cofactor Suppression

Author:

Di Spiridione CarmelaORCID,Aresta MicheleORCID,Dibenedetto AngelaORCID

Abstract

The need to decrease the concentration of CO2 in the atmosphere has led to the search for strategies to reuse such molecule as a building block for chemicals and materials or a source of carbon for fuels. The enzymatic cascade of reactions that produce the reduction of CO2 to methanol seems to be a very attractive way of reusing CO2; however, it is still far away from a potential industrial application. In this review, a summary was made of all the advances that have been made in research on such a process, particularly on two salient points: enzyme immobilization and cofactor regeneration. A brief overview of the process is initially given, with a focus on the enzymes and the cofactor, followed by a discussion of all the advances that have been made in research, on the two salient points reported above. In particular, the enzymatic regeneration of NADH is compared to the chemical, electrochemical, and photochemical conversion of NAD+ into NADH. The enzymatic regeneration, while being the most used, has several drawbacks in the cost and life of enzymes that suggest attempting alternative solutions. The reduction in the amount of NADH used (by converting CO2 electrochemically into formate) or even the substitution of NADH with less expensive mimetic molecules is discussed in the text. Such an approach is part of the attempt made to take stock of the situation and identify the points on which work still needs to be conducted to reach an exploitation level of the entire process.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference96 articles.

1. Climate Change 2022: Impacts, Adaptation, and Vulnerability;Portner,2022

2. UNFCCC Sites and Platforms https://unfccc.int/documents/460952

3. An Economy Based on Carbon Dioxide and Water,2019

4. The Carbon Dioxide Revolution

5. Industrial carbon dioxide capture and utilization: state of the art and future challenges

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3