Influence of the Immobilization Technique on the Productivity of Enzymes in the Cascade Reduction of CO2 to CH3OH

Author:

Di Spiridione Carmela12,Aresta Michele23ORCID,Dibenedetto Angela123ORCID

Affiliation:

1. Department of Chemistry and METEA Research Center University of Bari Campus Universitario Via Orabona, 4 70126 Bari Italy

2. Interuniversity Consortium on Chemical Reactivity and Catalysis – CIRCC Bari Unit, Via C. Ulpiani, 27 70126 Bari Italy

3. IC2R s.r.l., Innovative Catalysis for Carbon Recycling, Tecnopolis Lab 019‐020, via Casamassima km 3 70010 Valenzano‐BA Italy

Abstract

The enzymatic effectiveness in the reaction cascade that reduces CO2 to methanol in water at room‐temperature faces various constraints. One of the major challenges is the short life of costly enzymes: immobilization is used to make them more stable and recyclable. The comparative analysis of the several immobilization techniques reported in the literature is challenging due to the diverse reaction conditions (single enzyme test or pool of enzymes test) and experimental setups, as well as the high variability in the amount of enzymes and cofactor. In the present study, a comparison is presented among three different methods (co‐encapsulation into Ca–alginate beads, co‐absorption onto zirconium(IV) phosphate (ZrP) and covalent binding to dialdehydecellulose [DAC]) of co‐immobilization of the three dehydrogenases Fatedehydrogenase (DH), FaldDH, and alcohol dehydrogenase, used in equal amount and under the same experimental conditions, so to check at what extension the support and the immobilization method can influence the activity of the enzymatic pool. DAC is used for the first time to support the three DHs and results to be the best method of immobilization with respect to those used here, that also allows longer life on enzymes and repeated recycling of the supported enzymes, increasing the overall methanol production with respect to the free enzymes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3