Extraction, Radical Scavenging Activities, and Chemical Composition Identification of Flavonoids from Sunflower (Helianthus annuus L.) Receptacles

Author:

Qiao Zian,Han LuORCID,Liu Xinsheng,Dai Huining,Liu Changmin,Yan Min,Li Wannan,Han Weiwei,Li Xinlu,Huang Silu,Gao BoORCID

Abstract

This study was focused on extraction, radical scavenging activities, and chemical composition identification of total flavonoids in sunflower (Helianthus annuus L.) receptacles (TFSR). We investigated the optimal extract parameters of TFSR using response surface methodology. The highest yield of TFSR was 1.04% with the ethanol concentration 58%, the material-to-liquid ratio 1:20 (v/w), the extraction time 2.6 h, and the extraction temperature 67 °C. The results of radical scavenging activities showed that ethyl acetate fraction (EAF) was the strongest by using 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2’-azino-bis (3-ethylbenzo thiazoline-6-sulfonic acid) (ABTS) and iron ion reducing analysis. The EAF had the highest flavonoids contents. Four fractions A, B, C and D were enrichment from EAF by polyamide resin. Fraction B had the highest flavonoids content. Thirteen chemical components of flavonoids in fraction B were first identified by Ultimate 3000 Nano LC System coupled to a Q Exactive HF benchtop Orbitrap mass spectrometer (UHPLC-HRMS/MS). Among of the thirteen chemical components, isoquercetin and daidzein were identified accurately by comparing with standard samples. Radical scavenging analysis showed that isoquercetin and EAF had strong activities. Therefore, sunflower receptacles can be used as a source of natural flavonoids. TFSR as a natural radical scavenger has potential applications in pharmaceutical industry.

Funder

Jilin Scientific and Technological Development Program

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3