A New Perspective on SPME and SPME Arrow: Formaldehyde Determination by On-Sample Derivatization Coupled with Multiple and Cooling-Assisted Extractions

Author:

Dugheri Stefano1ORCID,Cappelli Giovanni2,Fanfani Niccolò3,Ceccarelli Jacopo2ORCID,Marrubini Giorgio4ORCID,Squillaci Donato2ORCID,Traversini Veronica2,Gori Riccardo5ORCID,Mucci Nicola2ORCID,Arcangeli Giulio2

Affiliation:

1. Industrial Hygiene and Toxicology Laboratory, University Hospital Careggi, 50134 Florence, Italy

2. Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy

3. Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy

4. Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy

5. Department of Civil and Environmental Engineering, University of Florence, 50121 Florence, Italy

Abstract

Formaldehyde (FA) is a toxic compound and a human carcinogen. Regulating FA-releasing substances in commercial goods is a growing and interesting topic: worldwide production sectors, like food industries, textiles, wood manufacture, and cosmetics, are involved. Thus, there is a need for sensitive, economical, and specific FA monitoring tools. Solid-phase microextraction (SPME), with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine (PFBHA) on-sample derivatization and gas chromatography, is proposed for FA monitoring of real-life samples. This study reports the use of polydimethylsiloxane (PDMS) as a sorbent phase combined with innovative commercial methods, such as multiple SPME (MSPME) and cooling-assisted SPME, for FA determination. Critical steps, such as extraction and sampling, were evaluated in method development. The derivatization was performed at 60 °C for 30 min, followed by 15 min sampling at 10 °C, in three cycles (SPME Arrow) or six cycles (SPME). The sensitivity was satisfactory for the method’s purposes (LOD-LOQ at 11-36 ng L−1, and 8-26 ng L−1, for SPME and SPME Arrow, respectively). The method’s linearity ranges from the lower LOQ at trace level (ng L−1) to the upper LOQ at 40 mg L−1. The precision range was 5.7–10.2% and 4.8–9.6% and the accuracy was 97.4% and 96.3% for SPME and SPME Arrow, respectively. The cooling MSPME set-up applied to real commercial goods provided results of quality comparable to previously published data.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3