Thiourea-Capped Nanoapatites Amplify Osmotic Stress Tolerance in Zea mays L. by Conserving Photosynthetic Pigments, Osmolytes Biosynthesis and Antioxidant Biosystems

Author:

Faryal SanaORCID,Ullah RehmanORCID,Khan Muhammad NaumanORCID,Ali BaberORCID,Hafeez AqsaORCID,Jaremko Mariusz,Qureshi Kamal AhmadORCID

Abstract

Salinity is one of the most prevalent abiotic stresses which not only limits plant growth and yield, but also limits the quality of food products. This study was conducted on the surface functionalization of phosphorus-rich mineral apatite nanoparticles (ANPs), with thiourea as a source of nitrogen (TU–ANPs) and through a co-precipitation technique for inducing osmotic stress tolerance in Zea mays. The resulting thiourea-capped apatite nanostructure (TU–ANP) was characterized using complementary analytical techniques, such as EDX, SEM, XRD and IR spectroscopy. The pre-sowing of soaked seeds of Zea mays in 1.00 µg/mL, 5.00 µg/mL and 10 µg/mL of TU–ANPs yielded growth under 0 mM, 60 mM and 100 mM osmotic stress of NaCl. The results show that Ca and P salt acted as precursors for the synthesis of ANPs at an alkaline pH of 10–11. Thiourea as a source of nitrogen stabilized the ANPs’ suspension medium, leading to the synthesis of TU–ANPs. XRD diffraction analysis validated the crystalline nature of TU–ANPs with lattice dimensions of 29 nm, calculated from FWHM using the Sherrer equation. SEM revealed spherical morphology with polydispersion in size distribution. EDS confirmed the presence of Ca and P at a characteristic KeV, whereas IR spectroscopy showed certain stretches of binding functional groups associated with TU–ANPs. Seed priming with TU–ANPs standardized germination indices (T50, MGT, GI and GP) which were significantly declined by NaCl-based osmotic stress. Maximum values for biochemical parameters, such as sugar (39.8 mg/g at 10 µg/mL), protein (139.8 mg/g at 10 µg/mL) and proline (74.1 mg/g at 10 µg/mL) were recorded at different applied doses of TU–ANP. Antioxidant biosystems in the form of EC 1.11.1.6 catalase (11.34 IU/g FW at 10 µg/mL), EC 1.11.1.11 APX (0.95 IU/G FW at 10 µg/mL), EC 1.15.1.1 SOD (1.42 IU/g FW at 5 µg/mL), EC 1.11.1.7 POD (0.43 IU/g FW at 5 µg/mL) were significantly restored under osmotic stress. Moreover, photosynthetic pigments, such as chlorophyll A (2.33 mg/g at 5 µg/mL), chlorophyll B (1.99 mg/g at 5 µg/mL) and carotenoids (2.52 mg/g at 10 µg/mL), were significantly amplified under osmotic stress via the application of TU–ANPs. Hence, the application of TU–ANPs restores the growth performance of plants subjected to induced osmotic stress.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3