Microwave-assisted synthesis of ZnS@CuInxSy for photocatalytic degradation of coloured and non-coloured pollutants

Author:

Rahman Ashmalina,Khan Fazlurrahman,Jennings James Robert,Kim Young-Mog,Khan Mohammad Mansoob

Abstract

AbstractCopper indium sulfide (CuInS2) exhibits strong visible light absorption and thus has the potential for good photocatalytic activity; however, rapid charge recombination limits its practical usage. An intriguing strategy to overcome this issue is to couple CuInS2 with another semiconductor to form a heterojunction, which can improve the charge carrier separation and, hence, enhance the photocatalytic activity. In this study, photocatalysts comprising CuInS2 with a secondary CuS phase (termed CuInxSy) and CuInxSy loaded with ZnS (termed ZnS@CuInxSy) were synthesized via a microwave-assisted method. Structural and morphological characterization revealed that the ZnS@CuInxSy photocatalyst comprised tetragonal CuInS2 containing a secondary phase of hexagonal CuS, coupled with hexagonal ZnS. The effective band gap energy of CuInxSy was widened from 2.23 to 2.71 as the ZnS loading increased from 0 to 30%. The coupling of CuInxSy with ZnS leads to long-lived charge carriers and efficient visible-light harvesting properties, which in turn lead to a remarkably high activity for the photocatalytic degradation of brilliant green (95.6% in 5 h) and conversion of 4-nitrophenol to 4-nitrophenolate ions (95.4% in 5 h). The active species involved in these photocatalytic processes were evaluated using suitable trapping agents. Based on the obtained results, photocatalytic mechanisms are proposed that emphasize the importance of h+, O2•–, and OH in photocatalytic processes using ZnS@CuInxSy.

Funder

Universiti Brunei Darussalam

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3