Structure-Based Profiling of Potential Phytomolecules with AKT1 a Key Cancer Drug Target

Author:

Mirza Zeenat12,Karim Sajjad23ORCID

Affiliation:

1. King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia

3. Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Identifying cancer biomarkers is imperative, as upregulated genes offer a better microenvironment for the tumor; hence, targeted inhibition is preferred. The theme of our study is to predict molecular interactions between cancer biomarker proteins and selected natural compounds. We identified an overexpressed potential molecular target (AKT1) and computationally evaluated its inhibition by four dietary ligands (isoliquiritigenin, shogaol, tehranolide, and theophylline). The three-dimensional structures of protein and phytochemicals were retrieved from the RCSB PDB database (4EKL) and NCBI’s PubChem, respectively. Rational structure-based docking studies were performed using AutoDock. Results were analyzed based primarily on the estimated free binding energy (kcal/mol), hydrogen bonds, and inhibition constant, Ki, to identify the most effective anti-cancer phytomolecule. Toxicity and drug-likeliness prediction were performed using OSIRIS and SwissADME. Amongst the four phytocompounds, tehranolide has better potential to suppress the expression of AKT1 and could be used for anti-cancer drug development, as inhibition of AKT1 is directly associated with the inhibition of growth, progression, and metastasis of the tumor. Docking analyses reveal that tehranolide has the most efficiency in inhibiting AKT1 and has the potential to be used for the therapeutic management of cancer. Natural compounds targeting cancer biomarkers offer less rejection, minimal toxicity, and fewer side effects.

Funder

Institutional Fund Projects

Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3