Theoretical Insight into the Reaction Mechanism and Kinetics for the Criegee Intermediate of anti-PhCHOO with SO2

Author:

Du Benni,Zhang WeichaoORCID

Abstract

In this study, the density functional theory (DFT) and CCSD(T) method have been performed to gain insight into the possible products and detailed reaction mechanism of the Criegee intermediate (CI) of anti-PhCHOO with SO2 for the first time. The potential energy surfaces (PESs) have been depicted at the UCCSD(T)/6-311++G(d,p)//UB3LYP/6-311++G(d,p) levels of theory with ZPE correction. Two different five-membered ring adducts, viz., endo PhCHOOS(O)O (IM1) and exo PhCHOOS(O)O (IM2) have been found in the entrance of reaction channels. Both direct and indirect reaction pathways from IM1 and IM2 have been considered for the title reaction. Our calculations show that the formation of PhCHO+SO3 (P1) via indirect reaction pathways from IM1 is predominant in all the pathways, and the production of P1 via direct dissociation pathway of IM1 and indirect reaction pathways of IM2 cannot be neglected. Moreover, PhCOOH+SO2 (P2) initiated from IM2 is identified as the minor product. According to the kinetic calculation, the total rate constant for the anti-PhCHOO+SO2 reaction is estimated to be 6.98 × 10−10 cm3·molecule−1·s−1 at 298 K.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3