Studying the Suitability of Nineteen Lignins as Partial Polyol Replacement in Rigid Polyurethane/Polyisocyanurate Foam

Author:

Henry ChristiánORCID,Gondaliya AkashORCID,Thies Mark,Nejad MojganORCID

Abstract

In this study, nineteen unmodified lignins from various sources (hardwood, softwood, wheat straw, and corn stover) and isolation processes (kraft, soda, organosolv, sulfite, and enzymatic hydrolysis) were used to replace 30 wt.% of petroleum-based polyol in rigid polyurethane/polyisocyanurate (PUR/PIR) foam formulations. Lignin samples were characterized by measuring their ash content, hydroxyl content (Phosphorus Nuclear Magnetic Resonance Spectroscopy), impurities (Inductively Coupled Plasma), and pH. After foam formulation, properties of lignin-based foams were evaluated and compared with a control foam (with no lignin) via cell morphology, closed-cell content, compression strength, apparent density, thermal conductivity, and color analysis. Lignin-based foams passed all measured standard specifications required by ASTM International C1029-15 for type 1 rigid insulation foams, except for three foams. These three foams had poor compressive strengths, significantly larger cell sizes, darker color, lower closed-cell contents, and slower foaming times. The foam made with corn stover enzymatic hydrolysis lignin showed no significant difference from the control foam in terms of compressive strength and outperformed all other lignin-based foams due to its higher aliphatic and p-hydroxyphenyl hydroxyl contents. Lignin-based foams that passed all required performance testing were made with lignins having higher pH, potassium, sodium, calcium, magnesium, and aliphatic/p-hydroxyphenyl hydroxyl group contents than those that failed.

Funder

US, Department of Energy-EERE

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference61 articles.

1. The Polyurethanes Book;Randall,2002

2. Polyurethane and Related Foams: Chemistry and Technology;Ashida,2006

3. Polyurethane Handbook: Chemistry-Raw Materials-Processing-Application-Properties;Oertel,1985

4. Novel Rigid Polyisocyanurate Foams from Synthesized Biobased Polyester Polyol with Enhanced Properties

5. Advanced biobased and rigid foams, based on urethane-modified isocyanurate from oxypropylated gambier tannin polyol

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3