Advancements in Flame-Retardant Systems for Rigid Polyurethane Foam

Author:

Yuan Yao1,Lin Weiliang1,Xiao Yi1,Yu Bin2,Wang Wei3ORCID

Affiliation:

1. Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China

2. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China

3. School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

The amplified employment of rigid polyurethane foam (RPUF) has accentuated the importance of its flame-retardant properties in stimulating demand. Thus, a compelling research report is essential to scrutinize the recent progression in the field of the flame retardancy and smoke toxicity reduction of RPUF. This comprehensive analysis delves into the conventional and innovative trends in flame-retardant (FR) systems, comprising reactive-type FRs, additive-type FRs, inorganic nanoparticles, and protective coatings for flame resistance, and summarizes their impacts on the thermal stability, mechanical properties, and smoke toxicity suppression of the resultant foams. Nevertheless, there are still several challenges that require attention, such as the migration of additives, the insufficient interfacial compatibility between flame-retardant polyols or flame retardants and the RPUF matrix, and the complexity of achieving both flame retardancy and mechanical properties simultaneously. Moreover, future research should focus on utilizing functionalized precursors and developing biodegradable RPUF to promote sustainability and to expand the applications of polyurethane foam.

Funder

Talents Introduction Program of the Xiamen University of Technology, China

Natural Science Foundation of Fujian Province, China

Young and Middle-Aged Teachers Education Scientific Research Project of Fujian Province

Australian Research Council/Discovery Early Career Researcher Award (DECRA) funding scheme

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3