Optimization of Mixed Fermentation Conditions of Dietary Fiber from Soybean Residue and the Effect on Structure, Properties and Potential Biological Activity of Dietary Fiber from Soybean Residue

Author:

Xu Xifei12,Zhang Xuejing13,Sun Mubai1,Li Da1,Hua Mei1,Miao Xinyu1,Su Ying1,Chi Yanping1,Wang Jinghui1,Niu Honghong1

Affiliation:

1. Institute of Agro-Product Process, Jilin Academy of Agricultural Science, Changchun 133000, China

2. Department of Food Science and Engineering, College of Agriculture, Yanbian University, Yanji 133002, China

3. Department of Microbiology, College of Life Sciences, Jilin normal university, Siping 136000, China

Abstract

Soybean residue is a by-product of soybean product production that is wasted unreasonably at present. Accomplishing the efficient utilization of soybean residue can save resources. A composite microbial system was constructed using lactic acid bacteria (LAB) and Saccharomyces cerevisiae (SC), and modified soybean residue was prepared by solid fermentation. In order to explore the value of modified soybean residue as a food raw material, its physical and chemical properties, adsorption properties, and antioxidant properties were studied. The results showed that the soluble dietary fiber (SDF) yield of mixed fermentation (MF) increased significantly. Both groups of soybean residues had representative polysaccharide infrared absorption peaks, and MF showed a looser structure and lower crystallinity. In terms of the adsorption capacity index, MF also has a higher adsorption capacity for water molecules, oil molecules, and cholesterol molecules. In addition, the in vitro antioxidant capacity of MF was also significantly higher than that of unfermented soybean residue (UF). In conclusion, our study shows that mixed fermentation could increase SDF content and improve the functional properties of soybean residue. Modified soybean residue prepared by mixed fermentation is the ideal food raw material.

Funder

Innovation Project of Jilin Academy of Agricultural Sciences—Directed Commission

Key Research And Development Program of Jilin Province Science And Technology Development Plan

Jilin Province Agricultural Science And Technology Innovation Project—Talent Fund

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3