Enhanced Oxygen Storage Capacity of Porous CeO2 by Rare Earth Doping

Author:

Xu Yaohui12ORCID,Gao Liangjuan3,Hou Quanhui4,Wu Pingkeng5,Zhou Yunxuan6ORCID,Ding Zhao6ORCID

Affiliation:

1. Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China

2. Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan 614000, China

3. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China

4. School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China

5. Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA

6. College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China

Abstract

CeO2 is an important rare earth (RE) oxide and has served as a typical oxygen storage material in practical applications. In the present study, the oxygen storage capacity (OSC) of CeO2 was enhanced by doping with other rare earth ions (RE, RE = Yb, Y, Sm and La). A series of Undoped and RE–doped CeO2 with different doping levels were synthesized using a solvothermal method following a subsequent calcination process, in which just Ce(NO3)3∙6H2O, RE(NO3)3∙nH2O, ethylene glycol and water were used as raw materials. Surprisingly, the Undoped CeO2 was proved to be a porous material with a multilayered special morphology without any additional templates in this work. The lattice parameters of CeO2 were refined by the least–squares method with highly pure NaCl as the internal standard for peak position calibrations, and the solubility limits of RE ions into CeO2 were determined; the amounts of reducible–reoxidizable Cen+ ions were estimated by fitting the Ce 3d core–levels XPS spectra; the non–stoichiometric oxygen vacancy (VO) defects of CeO2 were analyzed qualitatively and quantitatively by O 1s XPS fitting and Raman scattering; and the OSC was quantified by the amount of H2 consumption per gram of CeO2 based on hydrogen temperature programmed reduction (H2–TPR) measurements. The maximum [OSC] of CeO2 appeared at 5 mol.% Yb–, 4 mol.% Y–, 4 mol.% Sm– and 7 mol.% La–doping with the values of 0.444, 0.387, 0.352 and 0.380 mmol H2/g by an increase of 93.04, 68.26, 53.04 and 65.22%. Moreover, the dominant factor for promoting the OSC of RE–doped CeO2 was analyzed.

Funder

Opening Project of Crystalline Silicon Photovoltaic New Energy Research Institute, China

Leshan Normal University Research Program, China

Fundamental Research Funds for the Central Universities, China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3