Synthesis and In Silico Docking Study towards M-Pro of Novel Heterocyclic Compounds Derived from Pyrazolopyrimidinone as Putative SARS-CoV-2 Inhibitors

Author:

Horchani Mabrouk,Heise Niels V.ORCID,Csuk RenéORCID,Ben Jannet HichemORCID,Harrath Abdel HalimORCID,Romdhane Anis

Abstract

In addition to vaccines, antiviral drugs are essential in order to suppress COVID-19. Although some inhibitor candidates have been determined to target the SARS-CoV-2 protein, there is still an urgent need to continue researching novel inhibitors of the SARS-CoV-2 main protease ‘Omicron P132H’, a protein that has recently been discovered. In the present study, in the search for therapeutic alternatives to treat COVID-19 and its recent variants, we conducted a structure-based virtual screening using docking studies for a new series of pyrazolo[3,4-d]pyrimidin-4(5H)-one derivatives 5–13, which were synthesized from the condensation reaction of pyrazolopyrimidinone-hydrazide (4) with a series of electrophiles. Some significant ADMET predictions–in addition to the docking results–were obtained based on the types of interactions formed and the binding energy values were compared to the reference anti- SARS-CoV-2 redocked drug nirmatrelvir.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference44 articles.

1. Characteristics of SARS-CoV-2 and COVID-19

2. 14.9 Million Excess Deaths Associated with the COVID-19 Pandemic in 2020 and 2021;World Health Organization (WHO)

3. India’s Indigenous Idea of Herd Immunity: The Solution for COVID-19?;Bheenaveni;Tradit. Med. Res.,2020

4. A Practical Approach to the Management of Cancer Patients During the Novel Coronavirus Disease 2019 (COVID-19) Pandemic: An International Collaborative Group

5. SARS-CoV-2 Variants in Patients with Immunosuppression

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3