Potential Plasticity of the Mannoprotein Repertoire Associated to Mycobacterium tuberculosis Virulence Unveiled by Mass Spectrometry-Based Glycoproteomics

Author:

Tonini Laure,Sadet Bashir,Stella Alexandre,Bouyssié David,Nigou Jérôme,Burlet-Schiltz Odile,Rivière MichelORCID

Abstract

To date, Mycobacterium tuberculosis (Mtb) remains the world’s greatest infectious killer. The rise of multidrug-resistant strains stresses the need to identify new therapeutic targets to fight the epidemic. We previously demonstrated that bacterial protein-O-mannosylation is crucial for Mtb infectiousness, renewing the interest of the bacterial-secreted mannoproteins as potential drug-targetable virulence factors. The difficulty of inventorying the mannoprotein repertoire expressed by Mtb led us to design a stringent multi-step workflow for the reliable identification of glycosylated peptides by large-scale mass spectrometry-based proteomics. Applied to the differential analyses of glycoproteins secreted by the wild-type Mtb strain—and by its derived mutant invalidated for the protein-O-mannosylating enzyme PMTub—this approach led to the identification of not only most already known mannoproteins, but also of yet-unknown mannosylated proteins. In addition, analysis of the glycoproteome expressed by the isogenic recombinant Mtb strain overexpressing the PMTub gene revealed an unexpected mannosylation of proteins, with predicted or demonstrated functions in Mtb growth and interaction with the host cell. Since in parallel, a transient increased expression of the PMTub gene has been observed in the wild-type bacilli when infecting macrophages, our results strongly suggest that the Mtb mannoproteome may undergo adaptive regulation during infection of the host cells. Overall, our results provide deeper insights into the complexity of the repertoire of mannosylated proteins expressed by Mtb, and open the way to novel opportunities to search for still-unexploited potential therapeutic targets.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference86 articles.

1. Global Tuberculosis Report 2019,2019

2. State of the globe: The global battle for survival against Mycobacterium tuberculosis

3. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance

4. Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis

5. Identification, isolation and partial characterization of Mycobacterium tuberculosis glycoprotein antigens;Espitia;Clin. Exp. Immunol.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3