Disruption of MenT2 toxin impairs the growth of Mycobacterium tuberculosis in guinea pigs

Author:

Gosain Tannu Priya1,Singh Manisha1,Singh Charandeep2,Thakur Krishan Gopal2,Singh Ramandeep1ORCID

Affiliation:

1. Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India

2. Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh-160036, India

Abstract

Toxin–antitoxin (TA) systems are abundantly present in the genomes of various bacterial pathogens. TA systems have been implicated in either plasmid maintenance or protection against phage infection, stress adaptation or disease pathogenesis. The genome of Mycobacterium tuberculosis encodes for more than 90 TA systems and 4 of these belong to the type IV subfamily (MenAT family). The toxins and antitoxins belonging to type IV TA systems share sequence homology with the AbiEii family of nucleotidyl transferases and the AbiEi family of putative transcriptional regulators, respectively. Here, we have performed experiments to understand the role of MenT2, a toxin from the type IV TA system, in mycobacterial physiology and disease pathogenesis. The ectopic expression of MenT2 using inducible vectors does not inhibit bacterial growth in liquid cultures. Bioinformatic and molecular modelling analysis suggested that the M. tuberculosis genome has an alternative start site upstream of the annotated menT2 gene. The overexpression of the reannotated MenT2 resulted in moderate growth inhibition of Mycobacterium smegmatis . We show that both menT2 and menA2 transcript levels are increased when M. tuberculosis is exposed to nitrosative stress, in vitro. When compared to the survival of the wild-type and the complemented strain, the ΔmenT2 mutant strain of M. tuberculosis was more resistant to being killed by nitrosative stress. However, the survival of both the ΔmenT2 mutant and the wild-type strain was similar in macrophages and when exposed to other stress conditions. Here, we show that MenT2 is required for the establishment of disease in guinea pigs. Gross pathology and histopathology analysis of lung tissues from guinea pigs infected with the ∆menT2 strain revealed significantly reduced tissue damage and inflammation. In summary, these results provide new insights into the role of MenT2 in mycobacterial pathogenesis.

Funder

The Wellcome Trust DBT India Alliance

Publisher

Microbiology Society

Subject

Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3