Author:
Wang Yaqi,Yang Yuanzhen,Jiao Jiaojiao,Wu Zhenfeng,Yang Ming
Abstract
A support vector regression (SVR) method was introduced to improve the robustness and predictability of the design space in the implementation of quality by design (QbD), taking the extraction process of Pueraria lobata as a case study. In this paper, extraction time, number of extraction cycles, and liquid–solid ratio were identified as critical process parameters (CPPs), and the yield of puerarin, total isoflavonoids, and extracta sicca were the critical quality attributes (CQAs). Models between CQAs and CPPs were constructed using both a conventional quadratic polynomial model (QPM) and the SVR algorithm. The results of the two models indicated that the SVR model had better performance, with a higher R2 and lower root-mean-square error (RMSE) and mean absolute deviation (MAD) than those of the QPM. Furthermore, the design space was predicted using a grid search technique. The operational range was extraction time, 24–51 min; number of extraction cycles, 3; and liquid–solid ratio, 14–18 mL/g. This study is the first reported work optimizing the design space of the extraction process of P. lobata based on an SVR model. SVR modeling, with its better prediction accuracy and generalization ability, could be a reliable tool for predicting the design space and shows great potential for the quality control of QbD.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献