Detrimental Impacts of Pharmaceutical Excipient PEG400 on Gut Microbiota and Metabolome in Healthy Mice

Author:

Zhao Mei123,Wang Pengjiao23,Sun Xiaodong23,Yang Dan23,Zhang Shuo234,Meng Xiaoxia235,Zhang Min23,Gao Xiuli123

Affiliation:

1. School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China

2. State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China

3. Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China

4. Experimental Animal Center, Guizhou Medical University, Guiyang 550025, China

5. School of Medicine and Health Management, Guizhou Medical University, Guiyang 550025, China

Abstract

Polyethylene glycol 400 (PEG400) is a widely used pharmaceutical excipient in the field of medicine. It not only enhances the dispersion stability of the main drug but also facilitates the absorption of multiple drugs. Our previous study found that the long-term application of PEG400 as an adjuvant in traditional Chinese medicine preparations resulted in wasting and weight loss in animals, which aroused our concern. In this study, 16S rRNA high-throughput sequencing technology was used to analyze the diversity of gut microbiota, and LC-MS/MS Q-Exactive Orbtriap metabolomics technology was used to analyze the effect of PEG400 on the metabolome of healthy mice, combined with intestinal pathological analysis, aiming to investigate the effects of PEG400 on healthy mice. These results showed that PEG400 significantly altered the structure of gut microbiota, reduced the richness and diversity of intestinal flora, greatly increased the abundance of Akkermansia muciniphila (A. muciniphila), increased the proportion of Bacteroidetes to Firmicutes, and reduced the abundance of many beneficial bacteria. Moreover, PEG400 changed the characteristics of fecal metabolome in mice and induced disorders in lipid and energy metabolism, thus leading to diarrhea, weight loss, and intestinal inflammation in mice. Collectively, these findings provide new evidence for the potential effect of PEG400 ingestion on a healthy host.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3