Design Strategies for and Stability of mRNA–Lipid Nanoparticle COVID-19 Vaccines

Author:

Liu Ting,Tian Yang,Zheng Aiping,Cui Chunying

Abstract

Messenger RNA (mRNA) vaccines have shown great preventive potential in response to the novel coronavirus (COVID-19) pandemic. The lipid nanoparticle (LNP), as a non-viral vector with good safety and potency factors, is applied to mRNA delivery in the clinic. Among the recently FDA-approved SARS-CoV-2 mRNA vaccines, lipid-based nanoparticles have been shown to be well-suited to antigen presentation and enhanced immune stimulation to elicit potent humoral and cellular immune responses. However, a design strategy for optimal mRNA-LNP vaccines has not been fully elaborated. In this review, we comprehensively and systematically discuss the research strategies for mRNA-LNP vaccines against COVID-19, including antigen and lipid carrier selection, vaccine preparation, quality control, and stability. Meanwhile, we also discuss the potential development directions for mRNA–LNP vaccines in the future. We also conduct an in-depth review of those technologies and scientific insights in regard to the mRNA-LNP field.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3