Concerning the Role of σ-Hole in Non-Covalent Interactions: Insights from the Study of the Complexes of ArBeO with Simple Ligands

Author:

Borocci StefanoORCID,Grandinetti FeliceORCID,Sanna NicoORCID

Abstract

The structure, stability, and bonding character of some exemplary LAr and L-ArBeO (L = He, Ne, Ar, N2, CO, F2, Cl2, ClF, HF, HCl, NH3) were investigated by MP2 and coupled-cluster calculations, and by symmetry-adapted perturbation theory. The nature of the stabilizing interactions was also assayed by the method recently proposed by the authors to classify the chemical bonds in noble-gas compounds. The comparative analysis of the LAr and L-ArBeO unraveled geometric and bonding effects peculiarly related to the σ-hole at the Ar atom of ArBeO, including the major stabilizing/destabilizing role of the electrostatic interactionensuing from the negative/positive molecular electrostatic potential of L at the contact zone with ArBeO. The role of the inductive and dispersive components was also assayed, making it possible to discern the factors governing the transition from the (mainly) dispersive domain of the LAr, to the σ-hole domain of the L-ArBeO. Our conclusions could be valid for various types of non-covalent interactions, especially those involving σ-holes of respectable strength such as those occurring in ArBeO.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference68 articles.

1. Noncovalent Interactions. Theory and Experiment;Hobza,2010

2. Noncovalent Interactions in the Synthesis and Design of New Compounds,2016

3. Enzymatic Noncovalent Synthesis

4. Definition of the hydrogen bond (IUPAC Recommendations 2011)

5. Forty years of progress in the study of the hydrogen bond

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3