Ternary Mixtures of Hard Spheres and Their Multiple Separated Phases

Author:

Sturtewagen Luka1,van der Linden Erik1

Affiliation:

1. Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands

Abstract

We study the liquid phase behavior of ternary mixtures of monodisperse hard spheres in solution. The interactions are modeled in terms of the second virial coefficient and can be additive hard sphere (HS) or non-additive hard sphere (NAHS) interactions. We give the set of equations that defines the phase diagram for mixtures of three components. We calculate the theoretical liquid–liquid phase separation boundary for two-phase separation (the binodal) and, if applicable, the three-phase boundary, as well as the plait points and the spinodal. The sizes of the three components are fixed. The first component (A) is the smallest one, the second component (B) is four times the size of the smallest component, and the third (C) component is three times the size of the smallest one. The interaction between the first two components is fixed, and this AB sub-mixture shows phase separation. The interactions of component C with the other two components are varied. Component C can be compatible or incompatible with components A and B. Depending on the compatibility of the components, the phase diagram is altered. The addition of the third component has an influence on the phase boundary, plait points, stability region, fractionation, and volume ratio between the different phases. When all sub-mixtures (AB, AC, and BC) show phase separation, a three-phase system becomes possible when the incompatibility among all components is high enough. The position and size of the three-phase region is dependent on the interactions between the different sub-mixtures. We study the fractionation off all components depending on specific parent concentrations.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase behavior in multicomponent mixtures;Frontiers in Soft Matter;2024-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3