Synthesis and Evaluation of PEG-PR for Water Flux Correction in an In Situ Rat Perfusion Model

Author:

Chen Guo,Min Xingqi,Zhang Qunqun,Zhang Zhiqiang,Wen Meiqiang,Yang Jun,Zou Meijuan,Sun Wei,Cheng Gang

Abstract

Phenol red (PR) is a widely used marker for water flux correction in studies of in situ perfusion, in which intestinal absorption usually leads to the underestimation of results. In this paper, we propose a novel marker polyethylene glycol (PEG)-PR (i.e., PR modified by PEGylation) with less permeability and evaluate its application in an in situ perfusion model in rats. PEG-PR was synthesized by the chemical conjunction of polyethylene glycol-4k/5k (PEG-4k/5k) and PR. The synthesized PEG-PR was then characterized using 1H-NMR, 13C-NMR, ultraviolet (UV), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) analyses. The low permeability of PEG-PR was assessed using everted gut sac (EGS) methods. The apparent permeability coefficients (Papp, 3–8 × 10−7 cm/s) of PEG4k/5k-PR exhibited a nearly 15-fold reduction compared to that of PR. The different concentrations of PEG4k/5k-PR did not contribute to the Papp value or cumulative permeable percentage (about 0.02–0.06%). Furthermore, the larger molecular weight due to PEGylation (PEG5k-PR) enhanced the nonabsorbable effect. To evaluate the potential application of the novel marker, atenolol, ketoprofen, and metoprolol, which represent various biopharmaceutics classification system (BCS) classes, were selected as model drugs for the recirculation perfusion method. The water flux corrected by PEG4k/5k-PR reflected the accuracy due to the nonabsorbable effect, while the effective intestinal membrane permeability (Peff) of atenolol corrected by PEG4k/5k-PR showed a statistically significant increase (p < 0.05) in different intestinal segments. In conclusion, PEG-PR is a promising marker for the permeability estimation when using the in situ perfusion model in rats.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3