Fractionation of Arctic Brown Algae (Fucus vesiculosus) Biomass Using 1-Butyl-3-methylimidazolium-Based Ionic Liquids

Author:

Belesov Artyom V.1ORCID,Lvova Daria A.1,Falev Danil I.1ORCID,Pikovskoi Ilya I.1ORCID,Faleva Anna V.1ORCID,Ul’yanovskii Nikolay V.1ORCID,Ladesov Anton V.1,Kosyakov Dmitry S.1ORCID

Affiliation:

1. Laboratory of Natural Compound Chemistry and Bioanalytics, Core Facility Center ‘Arktika’, Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia

Abstract

Arctic brown algae are considered a promising industrial-scale source of bioactive sub-stances as polysaccharides, polyphenols, and low-molecular secondary metabolites. Conventional technologies for their processing are focused mainly on the isolation of polysaccharides and involve the use of hazardous solvents. In the present study a “green” approach to the fractionation of brown algae biomass based on the dissolution in ionic liquids (ILs) with 1-butil-3-methylimidazolium (bmim) cation with further sequential precipitation of polysaccharides and polyphenols with acetone and water, respectively, is proposed. The effects of IL cation nature, temperature, and treatment duration on the dissolution of bladderwrack (Fucus vesiculosus), yields of the fractions, and their chemical composition were studied involving FTIR and NMR spectroscopy, as well as size-exclusion chromatography and monosaccharide analysis. It was shown that the use of bmim acetate ensures almost complete dissolution of plant material after 24 h treatment at 150 °C and separate isolation of the polysaccharide mixture (alginates, cellulose, and fucoidan) and polyphenols (phlorotannins) with the yields of ~40 and ~10%, respectively. The near-quantitative extraction of polyphenolic fraction with the weight-average molecular mass of 10–20 kDa can be achieved even under mild conditions (80–100 °C). Efficient isolation of polysaccharides requires harsh conditions. Higher temperatures contribute to an increase in fucoidan content in the polysaccharide fraction.

Funder

Russian Science Foundation

Ministry of Economic Development, Industry and Science of the Arkhangelsk Region

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3