The Effect of Cooling Rates on Thermal, Crystallization, Mechanical and Barrier Properties of Rotational Molding Polyamide 11 as the Liner Material for High-Capacity High-Pressure Vessels

Author:

Yu Muhuo12,Qi Liangliang12,Cheng Lele1,Min Wei1,Mei Zhonghao1,Gao Ruize1,Sun Zeyu12ORCID

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

2. Center for Civil Aviation Composites, Shanghai Key Laboratory of Lightweight Structural Composites, Donghua University, Shanghai 201620, China

Abstract

The rapid development of hydrogen fuel cells has been paralleled by increased demand for lightweight type IV hydrogen storage vessels with high hydrogen storage density, which raises the performance requirements of internal plastic liners. An appropriate manufacturing process is important to improve the quality of polymer liners. In this paper, DSC, WAXD, a universal testing machine and a differential pressure gas permeameter were used to investigate the effect of the cooling rate of the rotational molding polyamide 11 on the thermal, crystallization, mechanical and barrier properties. The cooling rate is formulated according to the cooling rate that can be achieved in actual production. The results suggest that two PA11 liner materials initially exhibited two-dimensional (circular) growth under non-isothermal crystallization conditions and shifted to one-dimensional space growth due to spherulite collision and crowding during the secondary crystallization stage. The slower the cooling process, the greater the crystallinity of the specimen. The increase in crystallinity significantly improved the barrier properties of the two PA11 liner materials, and the gas permeability coefficient was 2-3-fold higher than at low crystallinity. Moreover, the tensile strength, the tensile modulus, the flexural strength, and the flexural modulus increased, and the elongation at break decreased as the crystallinity increased.

Funder

State Key Laboratory of Fiber Material Modification

Science and Technology Committee of Shanghai Municipality

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3