Comparison of Thermophysical Properties of PIM Feedstocks with Polyoxymethylene and Wax-Polyolefin Binders

Author:

Muranov Alexander N.,Kocharov Maxim A.,Mikhailov Maxim S.

Abstract

One of the high-performance technologies for the serial production of small-sized metal and ceramic complex-profile parts is powder injection molding (PIM). The most industrially demanded types of polymer binder in PIM technology are polyoxymethylene-based compositions and wax-polyolefin mixtures. Despite the large number of studies devoted to different compositions of polymer binder for PIM technology, the actual task is still a comparative analysis of the properties of different binder types to determine their advantages and disadvantages, as well as the optimization of the used compositions. In this regard, this study aims at a comparative analysis of the thermophysical properties of the most demanded feedstocks with binder based on polyoxymethylene and wax-polyolefin mixtures under the condition of using identical steel powder filler. The specific heat capacity, temperatures, and heat of phase transitions, as well as the thermal inertia and effective thermal conductivity of the compared types of feedstocks, were determined as a result of the calculation-experimental study. The obtained data can replenish the knowledge bases necessary for simulation modeling and optimizing powder molding processes of various products made of 42CrMo4 steel. As a result of a comparative analysis of the thermophysical properties of feedstocks with identical powders, the kinetic effects in the thermal processes of forming feedstocks with polyoxymethylene are less significant than those in analogs with wax-polyolefin binder, which facilitates their moldability. Thus, the feedstock with polyoxymethylene has a significantly higher rate of temperature field leveling than the analogs with wax-polyolefin binder. Because of the insignificant difference in specific heat capacity, feedstocks based on polyoxymethylene have 1.5 times higher effective thermal conductivity and approximately 20% higher thermal inertia than feedstocks with identical powder filler and binder in the form of a wax-polyolefin mixture. The technological advantages of feedstocks with a wax-polyolefin binder include the possibility of processing at lower temperatures. Doi: 10.28991/CEJ-2024-010-06-05 Full Text: PDF

Publisher

Ital Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3