Synthesis of Azuleno[2,1-b]quinolones and Quinolines via Brønsted Acid-Catalyzed Cyclization of 2-Arylaminoazulenes

Author:

Shoji Taku1ORCID,Takeuchi Mutsumi23,Uda Mayumi2,Ariga Yukino2,Yamazaki Akari2,Sekiguchi Ryuta4,Ito Shunji4ORCID

Affiliation:

1. Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama 963-8642, Japan

2. Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan

3. Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

4. Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

Abstract

Quinolone and quinoline derivatives are frequently found as substructures in pharmaceutically active compounds. In this paper, we describe a procedure for the synthesis of azuleno[2,1-b]quinolones and quinolines from 2-arylaminoazulene derivatives, which are readily prepared via the aromatic nucleophilic substitution reaction of a 2-chloroazulene derivative with several arylamines. The synthesis of azuleno[2,1-b]quinolones was established by the Brønsted acid-catalyzed intramolecular cyclization of 2-arylaminoazulene derivatives bearing two ester groups at the five-membered ring. The halogenative aromatization of azuleno[2,1-b]quinolones with POCl3 yielded azuleno[2,1-b]quinolines with a chlorine substituent at the pyridine moiety. The aromatic nucleophilic substitution reaction of azuleno[2,1-b]quinolines bearing chlorine substituent with secondary amines was also investigated to afford the aminoquinoline derivatives. These synthetic methodologies reported in this paper should be valuable in the development of new pharmaceuticals based on the azulene skeleton.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3