Nonadiabatic Absorption Spectra and Ultrafast Dynamics of DNA and RNA Photoexcited Nucleobases

Author:

Green James A.ORCID,Jouybari Martha Yaghoubi,Aranda DanielORCID,Improta RobertoORCID,Santoro FabrizioORCID

Abstract

We have recently proposed a protocol for Quantum Dynamics (QD) calculations, which is based on a parameterisation of Linear Vibronic Coupling (LVC) Hamiltonians with Time Dependent (TD) Density Functional Theory (TD-DFT), and exploits the latest developments in multiconfigurational TD-Hartree methods for an effective wave packet propagation. In this contribution we explore the potentialities of this approach to compute nonadiabatic vibronic spectra and ultrafast dynamics, by applying it to the five nucleobases present in DNA and RNA. For all of them we computed the absorption spectra and the dynamics of ultrafast internal conversion (100 fs timescale), fully coupling the first 2–3 bright states and all the close by dark states, for a total of 6–9 states, and including all the normal coordinates. We adopted two different functionals, CAM-B3LYP and PBE0, and tested the effect of the basis set. Computed spectra are in good agreement with the available experimental data, remarkably improving over pure electronic computations, but also with respect to vibronic spectra obtained neglecting inter-state couplings. Our QD simulations indicate an effective population transfer from the lowest energy bright excited states to the close-lying dark excited states for uracil, thymine and adenine. Dynamics from higher-energy states show an ultrafast depopulation toward the more stable ones. The proposed protocol is sufficiently general and automatic to promise to become useful for widespread applications.

Funder

H2020 Marie Skłodowska-Curie Actions

Fundacion Areces

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3