Non-adiabatic direct quantum dynamics using force fields: Toward solvation

Author:

Cigrang L. L. E.1ORCID,Green J. A.2ORCID,Gómez S.3ORCID,Cerezo J.4ORCID,Improta R.5ORCID,Prampolini G.6ORCID,Santoro F.6ORCID,Worth G. A.1ORCID

Affiliation:

1. Department of Chemistry, University College London 1 , 20 Gordon St., WC1H 0AJ London, United Kingdom

2. Institut für Physikalische Theoretische Chemie, Goethe-Universität 2 , Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany

3. Departamento de Química Física, Universidad de Salamanca 3 , Salamanca 37008, Spain

4. Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 4 , 28049 Madrid, Spain

5. Istituto di Biostrutture e Bioimmagini-CNR 5 , Via De Amicis 95, I-80145 Napoli, Italy

6. Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR 6 , Via Moruzzi 1, I-56124 Pisa, Italy

Abstract

Quantum dynamics simulations are becoming a powerful tool for understanding photo-excited molecules. Their poor scaling, however, means that it is hard to study molecules with more than a few atoms accurately, and a major challenge at the moment is the inclusion of the molecular environment. Here, we present a proof of principle for a way to break the two bottlenecks preventing large but accurate simulations. First, the problem of providing the potential energy surfaces for a general system is addressed by parameterizing a standard force field to reproduce the potential surfaces of the molecule’s excited-states, including the all-important vibronic coupling. While not shown here, this would trivially enable the use of an explicit solvent. Second, to help the scaling of the nuclear dynamics propagation, a hierarchy of approximations is introduced to the variational multi-configurational Gaussian method that retains the variational quantum wavepacket description of the key quantum degrees of freedom and uses classical trajectories for the remaining in a quantum mechanics/molecular mechanics like approach. The method is referred to as force field quantum dynamics (FF-QD), and a two-state ππ*/nπ* model of uracil, excited to its lowest bright ππ* state, is used as a test case.

Funder

Royal Society

Consiglio Nazionale delle Ricerche

Engineering and Physical Sciences Research Council

Ministerio de Ciencia e Innovación

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Photodissociation: Quantum Dynamics Simulations of Methanol;The Journal of Physical Chemistry A;2024-08-28

2. Perspective on Theoretical and Experimental Advances in Atmospheric Photochemistry;The Journal of Physical Chemistry A;2024-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3