Multi-Target Cinnamic Acids for Oxidative Stress and Inflammation: Design, Synthesis, Biological Evaluation and Modeling Studies

Author:

Pontiki Eleni,Hadjipavlou-Litina DimitraORCID

Abstract

Inflammation is a complex phenomenon that results as a healing response of organisms to different factors, exerting immune signaling, excessive free radical activity and tissue destruction. Lipoxygenases and their metabolites e.g., LTB4, are associated with allergy, cell differentiation and carcinogenesis. Lipoxygenase 12/15 has been characterized as a mucosal-specific inhibitor of IgA and a contributor to the development of allergic sensitization and airway inflammation. Development of drugs that interfere with the formation or effects of these metabolites would be important for the treatment of various diseases like asthma, psoriasis, ulcerative colitis, rheumatoid arthritis, atherosclerosis, cancer and blood vessel disorders. In this study we extended our previous research synthesizing a series of multi-target cinnamic acids from the corresponding aldehydes with suitable 4-OH/Br substituted phenyl acetic acid by Knoevenagel condensation. The final products 1i, 3i, 3ii, 4i, 6i, 6ii, and 7i were obtained in high yields (52–98%) Their structures were verified spectrometrically, while their experimentally lipophilicity was determined as RM values. The novel derivatives were evaluated for their antioxidant activity using DPPH, hydroxyl radical, superoxide anion and ABTS+•, anti-lipid peroxidation and soybean lipoxygenase inhibition assays. The compounds presented medium interaction with DPPH (30–48% at 100 µM). In contrast all the synthesized derivatives strongly scavenge OH radicals (72–100% at 100 µM), ABTS+• (24–83% at 100 µM) and presented remarkable inhibition (87–100% at 100 µM) in linoleic acid peroxidation (AAPH). The topological polar surface of the compounds seems to govern the superoxide anion scavenging activity. Molecular docking studies were carried out on cinnamic acid derivative 3i and found to be in accordance with experimental biological results. All acids presented interesting lipoxygenase inhibition (IC50 = 7.4–100 µM) with compound 3i being the most potent LOX inhibitor with IC50 = 7.4 µM combining antioxidant activities. The antioxidant results support the LOX inhibitory activities. The recorded in vitro results highlight compound 3i as a lead compound for the design of new potent lipoxygenase inhibitors for the treatment of asthma, psoriasis, ulcerative colitis, rheumatoid arthritis, atherosclerosis, cancer and blood vessel disorders.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3