Rapid and Low-Cost Quantification of Adulteration Content in Camellia Oil Utilizing UV-Vis-NIR Spectroscopy Combined with Feature Selection Methods

Author:

Liu Qiang1,Gong Zhongliang1,Li Dapeng1ORCID,Wen Tao1,Guan Jinwei1,Zheng Wenfeng1

Affiliation:

1. School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China

Abstract

This study aims to explore the potential use of low-cost ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy to quantify adulteration content of soybean, rapeseed, corn and peanut oils in Camellia oil. To attain this aim, test oil samples were firstly prepared with different adulterant ratios ranging from 1% to 90% at varying intervals, and their spectra were collected by an in-house built experimental platform. Next, the spectra were preprocessed using Savitzky–Golay (SG)–Continuous Wavelet Transform (CWT) and the feature wavelengths were extracted using four different algorithms. Finally, Support Vector Regression (SVR) and Random Forest (RF) models were developed to rapidly predict adulteration content. The results indicated that SG–CWT with decomposition scale of 25 and the Iterative Variable Subset Optimization (IVSO) algorithm can effectively improve the accuracy of the models. Furthermore, the SVR model performed best for predicting adulteration of camellia oil with soybean oil, while the RF models were optimal for camellia oil adulterated with rapeseed, corn, or peanut oil. Additionally, we verified the models’ robustness by examining the correlation between the absorbance and adulteration content at certain feature wavelengths screened by IVSO. This study demonstrates the feasibility of using low-cost UV-Vis-NIR spectroscopy for the authentication of Camellia oil.

Funder

Key Research and Development Program of Hunan Province, China

Natural Science Foundation for Distinguished Young Scholars of Hunan Province

Hunan Forestry Science and Technology Project for Distinguished Young Scholars

Key Scientific Research Project of Education Department of Hunan Province, China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3