Author:
Tkachenko Nikolay V.,Muñoz-Castro Alvaro,Boldyrev Alexander I.
Abstract
A chemical bonding of several metallabenzenes and metallabenzynes was studied via an adaptive natural density partitioning (AdNDP) algorithm and the induced magnetic field analysis. A unique chemical bonding pattern was discovered where the M=C (M: Os, Re) double bond coexists with the delocalized 6c-2e π-bonding elements responsible for aromatic properties of the investigated complexes. In opposition to the previous description where 8 delocalized π-electrons were reported in metallabenzenes and metallabenzynes, we showed that only six delocalized π-electrons are present in those molecules. Thus, there is no deviation from Hückel’s aromaticity rule for metallabenzynes/metallabenzenes complexes. Based on the discovered bonding pattern, we propose two thermodynamically stable novel molecules that possess not only π-delocalization but also retain six σ-delocalized electrons, rendering them as doubly aromatic species. As a result, our investigation gives a new direction for the search for carbon-metal doubly aromatic molecules.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献