Potential Anti-SARS-CoV-2 Molecular Strategies

Author:

Vicidomini Caterina1,Roviello Giovanni N.1ORCID

Affiliation:

1. Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy

Abstract

Finding effective antiviral molecular strategies was a main concern in the scientific community when the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 as an easily transmissible and potentially deadly β-coronavirus able to cause the coronavirus disease 19 (COVID-19), which famously led to one of the most worrying pandemics in recent times. Other members of this zoonotic pathogenic family were already known before 2019, but apart from the SARS-CoV, which was responsible of severe acute respiratory syndrome (SARS) pandemic in 2002/2003, and Middle East respiratory syndrome coronavirus (MERS-CoV), whose main impact on humans is geographically restricted to Middle Eastern countries, the other human β-coronaviruses known at that time were those typically associated with common cold symptoms which had not led to the development of any specific prophylactic or therapeutic measures. Although SARS-CoV-2 and its mutations are still causing illness in our communities, COVID-19 is less deadly than before and we are returning to normality. Overall, the main lesson learnt after the past few years of pandemic is that keeping our bodies healthy and immunity defenses strong using sport, nature-inspired measures, and using functional foods are powerful weapons for preventing the more severe forms of illness caused by SARS-CoV-2 and, from a more molecular perspective, that finding drugs with mechanisms of action involving biological targets conserved within the different mutations of SARS-CoV-2—and possibly within the entire family of β-coronaviruses—gives more therapeutic opportunities in the scenario of future pandemics based on these pathogens. In this regard, the main protease (Mpro), having no human homologues, offers a lower risk of off-target reactivity and represents a suitable therapeutic target in the search for efficacious, broad-spectrum anti-β-coronavirus drugs. Herein, we discuss on the above points and also report some molecular approaches presented in the past few years to counteract the effects of β-coronaviruses, with a special focus on SARS-CoV-2 but also MERS-CoV.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3