Manganese Removal Using Functionalised Thiosalicylate-Based Ionic Liquid: Water Filtration System Application

Author:

Basirun Ain Aqilah1ORCID,Karim Wan Azlina Wan Ab2,Wei Ng Cheah3,Wu Jiquan3,Wilfred Cecilia Devi14

Affiliation:

1. Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management (ICM), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia

2. Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia

3. Camfil Malaysia Sdn Bhd, Plot 9A & 9B, Lorong Bemban 1, Bemban Industrial Estate, Batu Gajah 31000, Perak, Malaysia

4. Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia

Abstract

Aiming at the generation of new functionalised thiosalicylate-based ionic liquids, a polymeric hydrogel consisting of 1-hexylimidazole propionitrile thiosalicylate [HIMP][TS], with a solid biomaterial support based on polyvinyl alcohol (PVA)–alginate beads, was produced. This study aimed to develop a treatment method for removing manganese (Mn) heavy metal from industrial wastewater, which is known to be toxic and harmful towards the environment and human health. The method utilised an adsorption-based approach with an alginate adsorbent that incorporated a functionalised thiosalicylate-based ionic liquid. The synthesised smooth round beads of PVA–alginate–[HIMP][TS] adsorbent were structurally characterised using Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The Mn concentration and removal efficiency were evaluated using atomic absorption spectroscopy (AAS). Three important parameters were evaluated: pH, adsorbent dosage, and contact time. During optimisation using the interactive factor design of experiments through the Box–Behnken model, the results showed that the system achieved a maximum Mn removal efficiency of 98.91% at an initial pH of 7.15, with a contact time of 60 min, using a bead dosage of 38.26 g/L. The beads were also tested in an available water filtration prototype system to illustrate their industrial application, and the performance showed a removal efficiency of 99.14% with 0 NTU total suspended solid (TSS) and 0.13 mg/L turbidity analysis. The recyclability of PVA–alginate–[HIMP][TS] beads using 0.5 M HCl resulted in four cycles with constant 99% Mn removal. The adsorption capacity of Mn was also determined in optimum conditions with 56 mg/g. Therefore, the alginate–thiosalicylate-based ionic liquid system is considered an effective and environmentally friendly method for removing Mn heavy metal due to the high removal efficiency achieved.

Funder

Joint Research Project (JRP) grant

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3