Fabrication of Effective Nanohybrids Based on Organic Species, Polyvinyl Alcohol and Carbon Nanotubes in Addition to Nanolayers for Removing Heavy Metals from Water under Severe Conditions

Author:

Alali Hasna Abdullah,Saber OsamaORCID,Osama Aya,Ezzeldin Mohamed Farouk

Abstract

Industrial water has a dual problem because of its strong acidic characteristics and the presence of heavy metals. Removing heavy metals from water in these severe conditions has special requirements. For this problem, an economic method was used for removing iron (Fe), copper (Cu), chromium (Cr), nickel (Ni) and manganese (Mn) with extremely acidic characteristics from water. This method depends on the preparation of nanohybrids through host–guest interactions based on nanolayered structures, organic species (stearic acid), polyvinyl alcohol (PVA) and carbon nanotubes (CNTs). The formation of nanohybrids was confirmed using different techniques through the expansion of the interlayered spacing of the nanolayered structure from 0.76 nm to 1.60 nm, 1.40 nm and 1.06 nm. This nano-spacing is suitable for trapping and confining the different kinds of heavy metal. The experimental results indicated that the prepared nanohybrid was more effective than GreensandPlus, which is used on the market for purifying water. The high activity of the nanohybrid is obvious in the removal of both copper and nickel because the GreensandPlus was completely inactive for these heavy metals under severe conditions. Finally, these experimental results introduce new promising materials for purifying industrial water that can work under severe conditions.

Funder

King Faisal University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference38 articles.

1. Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies

2. Detoxification of Heavy Metals Using Marine Metal Resistant Bacteria: A New Method for the Bioremediation of Contaminated Alkaline Environments;Madhavi,2021

3. National Primary Drinking Water Regulations;Acrylamide;Kidney,2009

4. National Primary Drinking Water Regulations 2022;Environmental Protection Agency EPA

5. Understanding the Impacts of Changing Soil Temperature, Water Irrigation Source and Fertilizer Types on C and N Cycling in Arid Soils;AlMulla,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3