Factors Affecting Incurred Pesticide Extraction in Cereals

Author:

Yuan Xiu1ORCID,Kim Chang Jo1,Jeong Won Tae1,Kyung Kee Sung2,Noh Hyun Ho1ORCID

Affiliation:

1. Residual Agrochemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea

2. Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea

Abstract

This study investigated the effect of milling on the yields of incurred residues extracted from cereals. Rice, wheat, barley, and oat were soaked in nine pesticides (acetamiprid, azoxystrobin, imidacloprid, ferimzone, etofenprox, tebufenozide, clothianidin, hexaconazole, and indoxacarb), dried, milled, and passed through sieves of various sizes. The quick, easy, cheap, effective, rugged, and safe method and liquid chromatography–tandem mass spectrometry extracted and quantified the incurred pesticides, respectively. For rice and oat, the yields were higher for vortexed samples than for soaked samples. For rice, the yields improved as the extraction time increased from 1 to 5 min. The optimized method was validated based on the selectivity, limit of quantitation, linearity, accuracy, precision, and the matrix effect. For rice and barley, the average yields improved as the particle size decreased from <10 mesh to >60 mesh. For 40–60-mesh wheat and oat, all pesticides (except tebufenozide in oat) had the highest yields. For cereals, 0.5 min vortexing, 5 min extraction, and >40-mesh particle size should be used to optimize incurred pesticide extraction.

Funder

Research Program for Agricultural Science and Technology Development of the National Institute of Agricultural Science under the Rural Development Administration of South Korea

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3