Electrophysiological Activity and Survival Rate of Rats Nervous Tissue Cells Depends on D/H Isotopic Composition of Medium

Author:

Kozin Stanislav,Skrebitsky Vladimir,Kondratenko Rodion,Kravtsov Alexander,Butina Elena,Moiseev Arkady,Malyshko Vadim,Baryshev Mikhail,Elkina AnnaORCID,Dzhimak Stepan

Abstract

The deuterium content modification in an organism has a neuroprotective effect during the hypoxia model, affecting anxiety, memory and stress resistance. The aim of this work was to elucidate the possible mechanisms of the medium D/H composition modification on nerve cells. We studied the effect of an incubation medium with a 50 ppm deuterium content compared to a medium with 150 ppm on: (1) the activity of Wistar rats’ hippocampus CA1 field neurons, (2) the level of cultured cerebellar neuron death during glucose deprivation and temperature stress, (3) mitochondrial membrane potential (MMP) and the generation of reactive oxygen species in cultures of cerebellar neurons. The results of the analysis showed that the incubation of hippocampal sections in a medium with a 50 ppm deuterium reduced the amplitude of the pop-spike. The restoration of neuron activity was observed when sections were returned to the incubation medium with a 150 ppm deuterium content. An environment with a 50 ppm deuterium did not significantly affect the level of reactive oxygen species in neuron cultures, while MMP decreased by 16–20%. In experiments with glucose deprivation and temperature stress, the medium with 50 ppm increased the death of neurons. Thus, a short exposure of nerve cells in the medium with 50 ppm deuterium acts as an additional stressful factor, which is possibly associated with the violation of the cell energy balance. The decrease in the mitochondrial membrane potential, which is known to be associated with ATP synthesis, indicates that this effect may be associated with the cell energy imbalance. The decrease in the activity of the CA1 field hippocampal neurons may reflect reversible adaptive changes in the operation of fast-reacting ion channels.

Funder

Russian Foundation for Basic Research

state assignment of the SSC RAS

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3