Abstract
This study aimed to evaluate the antiglycation effects of adlay on protein glycation using in vitro glycation assays. Adlay seed was divided into the following four parts: the hull (AH), testa (AT), bran (AB), and polished adlay (PA). A solvent extraction technique and column chromatography were utilized to investigate the active fractions and components of adlay. Based on a BSA-glucose assay, the ethanolic extracts of AT (ATE) and AB (ABE) revealed a greater capacity to inhibit protein glycation. ATE was further consecutively partitioned into four solvent fractions with n-hexane, ethyl acetate (ATE-Ea), 1-butanol (ATE-BuOH), and water. ATE-BuOH and -Ea show marked inhibition of glucose-mediated glycation. Medium–high polarity subfractions eluted from ATE-BuOH below 50% methanol with Diaion HP-20, ATE-BuOH-c to -f, exhibited superior antiglycation activity, with a maximum inhibitory percentage of 88%. Two phenolic compounds, chlorogenic acid and ferulic acid, identified in ATE-BuOH with HPLC, exhibited potent inhibition of the individual stage of protein glycation and its subsequent crosslinking, as evaluated by the BSA-glucose assay, BS-methylglyoxal (MGO) assay, and G.K. peptide-ribose assay. In conclusion, this study demonstrated the antiglycation properties of ATE in vitro that suggest a beneficial effect in targeting hyperglycemia-mediated protein modification.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献