Development of a Ratiometric Fluorescent Cu(II) Indicator Based on Poly(N-isopropylacrylamide) Thermal Phase Transition and an Aminopyridyl Cu(II) Ligand

Author:

Nyiranshuti Lea1,Andrews Emily R.1,Povolotskiy Leonid I.1,Gomez Frances M.1ORCID,Bartlett Nathan R.1,Royappa Arun Timothy2,Rheingold Arnold L.3,Seitz William Rudolf1,Planalp Roy P.1ORCID

Affiliation:

1. Department of Chemistry, University of New Hampshire, Durham, NH 03824, USA

2. Department of Chemistry, University of West Florida, Pensacola, FL 32514, USA

3. Department of Chemistry, University of California San Diego, La Jolla, CA 92093, USA

Abstract

An aqueous Cu2+ and Zn2+ indicator is reported based on copolymerizing aminopyridine ligands and the environment-sensitive dansyl fluorophore into the responsive polymer poly(N-isopropylacrylamide) (PNIPAm). The metal ion binding creates charge and solvation that triggers PNIPAm’s thermal phase transition from hydrophobic globule to hydrophilic open coil. As a basis for sensing the metal-binding, the dansyl fluorescence emission spectra provide a signal at ca. 530 nm and a signal at 500 nm for the hydrophobic and hydrophilic environment, respectively, that are ratiometrically interpreted. The synthesis of the title pyridylethyl-pyridylmethyl-amine ligand (acronym PEPMA) with a 3-carbon linker to the copolymerizable group, aminopropylacrylamide (PEPMA-C3-acrylamide), is reported, along with a nonpolymerizable model ligand derivative. The response of the polymer is validated by increasing temperature from 25 °C to 49 °C, which causes a shift in maximum emission wavelength from 536 nm to 505 nm, along with an increase in the ratio of emission intensity of 505 nm/536 nm from 0.77 to 1.22 (λex = 330 nm) as the polymer releases water. The addition of divalent Cu or Zn to the indicator resulted in a dansyl emission shift of 10 nm to a longer wavelength, accompanied by fluorescence quenching in the case of Cu2+. The addition of EDTA to the Cu2+-loaded indicator reversed the fluorescence shift at 25 °C to 35 °C. The affinities of Cu2+ and Zn2+ for the PEPMA derivatives are log Kf = 11.85 and log Kf = 5.67, respectively, as determined by potentiometric titration. The single-crystal X-ray structure of the Cu2+-PEPMA derivative is five-coordinate, of-geometry intermediate between square-pyramidal and trigonal-bipyramidal, and is comparable to that of Cu2+ complexes with similar formation constants.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference31 articles.

1. Planetary boundaries: Guiding human development on a changing planet;Steffen;Science,2015

2. On-chip colorimetric detection of Cu2+ ions via density-controlled plasmonic core–satellites nanoassembly;Song;Anal. Chem.,2013

3. Modeling the Bioavailability of Nickel and Zinc to Ceriodaphnia dubia and Neocloeon triangulifer in Toxicity Tests with Natural Waters;Besser;Environ. Toxicol. Chem.,2021

4. Crichton, R.R. (2019). Biological Inorganic Chemistry: A New Introduction to Molecular Structure and Function, Academic Press. [3rd ed.].

5. Gastrointestinal upsets associated with ingestion of copper-contaminated water;Knobeloch;Environ. Health Perspect.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3