Temperature-Sensitive Sensors Modified with Poly(N-isopropylacrylamide): Enhancing Performance through Tailored Thermoresponsiveness

Author:

Yang Lei1,Qiu Guangwei1,Sun Yuanyuan2,Sun Luqiao1,Fan Xiaoguang2ORCID,Han Qiuju1,Li Zheng3

Affiliation:

1. School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China

2. College of Engineering, Shenyang Agricultural University, Shenyang 110866, China

3. School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China

Abstract

The development of temperature-sensitive sensors upgraded by poly(N-isopropylacrylamide) (PNIPAM) represents a significant stride in enhancing performance and tailoring thermoresponsiveness. In this study, an array of temperature-responsive electrochemical sensors modified with different PNIPAM-based copolymer films were fabricated via a “coating and grafting” two-step film-forming technique on screen-printed platinum electrodes (SPPEs). Chemical composition, grafting density, equilibrium swelling, surface wettability, surface morphology, amperometric response, cyclic voltammograms, and other properties were evaluated for the modified SPPEs, successively. The modified SPPEs exhibited significant changes in their properties depending on the preparation concentrations, but all the resulting sensors showed excellent stability and repeatability. The modified sensors demonstrated favorable sensitivity to hydrogen peroxide and L-ascorbic acid. Furthermore, notable temperature-induced variations in electrical signals were observed as the electrodes were subjected to temperature fluctuations above and below the lower critical solution temperature (LCST). The ability to reversibly respond to temperature variations, coupled with the tunability of PNIPAM’s thermoresponsive properties, opens up new possibilities for the design of sensors that can adapt to changing environments and optimize their performance accordingly.

Funder

National Natural Science Foundation of China

General Program of Department of Education of Liaoning Province of China

FuShun Revitalization Talents Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3