Abstract
Naringinase is an enzymatic complex used in the deglycosylation of compounds with a high application potential in the food and pharmaceutical industries. The aim of the study was to immobilize naringinase from Aspergillus niger KMS on a magnetic carrier obtained on the basis of carob gum activated by polyethyleneimine. Response surface methodology was used to optimize naringinase immobilization taking into account the following factors: pH, immobilization time, initial concentration of naringinase and immobilization temperature. The adsorption of the enzyme on a magnetic carrier was a reversible process. The binding force of naringinase was increased by crosslinking the enzyme with the carrier using dextran aldehyde. The crosslinked enzyme had better stability in an acidic environment and at a higher temperature compared to the free form. The immobilization and stabilization of naringinase by dextran aldehyde on the magnetic polysaccharide carrier lowered the activation energy, thus increasing the catalytic capacity of the investigated enzyme and increasing the activation energy of the thermal deactivation process, which confirms higher stability of the immobilized enzyme in comparison with free naringinase. The preparation of crosslinked naringinase retained over 80% of its initial activity after 10 runs of naringin hydrolysis from fresh and model grapefruit juice.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献