Development of a Ladder-Shape Melting Temperature Isothermal Amplification (LMTIA) Assay for the Identification of Cassava Component in Sweet Potato Starch Noodles

Author:

Zhang YongqingORCID,Wang Yongzhen,Ouyang Xingmei,Wang DeguoORCID,Xiao Fugang,Sun Juntao

Abstract

Food authenticity has become increasingly important as a result of food adulteration. To identify the authenticity of sweet potato starch noodles, the ladder-shape melting temperature isothermal amplification (LMTIA) method of determining cassava (Manihot esculenta Crantz) DNA in sweet potato starch noodles was used. A set of primers targeted at the internal transcription spacer (ITS) of cassava was designed, genomic DNA was extracted, the LMTIA reaction temperature was optimized, and the specificity of the primer was verified with the genomic DNAs of cassava, sweet potato (Ipomoea batatas L.), Solanum tuberosum L., Zea mays L., Vigna radiate L., Triticum aestivum L., and Glycine max (L.) Merr. The sensitivity with the serially diluted genomic DNA of cassava and the suitability for the DNA extracted from sweet potato starch adulterated with cassava starch were tested. The LMTIA assay for identifying the cassava component in sweet potato starch noodles was established. At the optimal temperature of 52 °C, the primers could specifically distinguish a 0.01% (w/w) cassava component added to sweet potato starch. Additionally, the LMTIA method was applied to the cassava DNA detection of 31 sweet potato starch noodle samples purchased from retail markets in China. Of these, 14 samples were positive. The LMTIA assay could be a reliable method for the rapid detection of cassava components in sweet potato starch noodles, to protect the rights of consumers and to regulate the sale market order of starch noodles.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3