A Facile Preparation of Sandwich-Structured Pd/Polypyrrole-Graphene/Pd Catalysts for Formic Acid Electro-Oxidation

Author:

Lu Zhenjiang1,Qin Wenjin1,Ma Juan2,Cao Yali1,Bao Shujuan3

Affiliation:

1. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, China

2. Department of Science and Technology, Xinjiang University, Urumqi 830046, China

3. Institute of Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, China

Abstract

Direct formic acid fuel cells (DFAFCs) are one of the most promising power sources due to its high conversion efficiency; relatively low carbon emissions, toxicity, and flammability; convenience; and low-cost storage and transportation. However, the key challenge to large-scale commercial applications is its poor power performance and the catalyst’s high preparation cost. In this study, a new sandwich-structured Pd/polypyrrole-graphene/Pd (Pd/PPy-Gns/Pd)-modified glassy carbon electrode (GCE) was prepared using a simple constant potential (CP) electrodeposition technique. On the basis of the unique synthetic procedure and structural advantages, the Pd/PPy-Gns/Pd shows a fast charge/mass transport rate, high electrocatalytic activity, and great stability for formic acid electro-oxidation (FAO). The mass activity of Pd/PPy-Gns/Pd electrode reaches 917 mA·mg−1Pd. The excellent catalytic activity is mainly due to the uniform embedding of Pd nanoparticles on the polypyrrole-graphene (PPy-Gns) support, which exposes more active sites, and prevents the shedding and inactivation of Pd nanoparticles. At the same time, the introduction of graphene (Gns) in the PPy further improved the conductivity of the catalyst and accelerated the transfer of electrons.

Funder

Natural Science Foundation of the Xinjiang Autonomous Region

Xinjiang Autonomous Region

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3