Optimizing Hydrolysis Resistance and Dispersion Characteristics via Surface Modification of Aluminum Nitride Powder Coated with PVP-b-P(St-alt-ITA) Copolymer

Author:

Wang Yu,Wang Shun,Zhu Guangdong,Xie Jianjun,Chen Zhan,Shi Ying

Abstract

Developing new coating modification technology of aluminum nitride (AlN) powder for higher hydrolysis resistance is the key to prepare high-performance AlN ceramic substrate with water-based wet process in the future. In the this paper, The poly(vinyl pyrrolidone)-b-poly(Styrene/Itaconic anhydride) (PVP-b-P(St/ITA))block copolymer with PVP as the independent chain segment was designed and synthesized through reversible addition fragmentation chain transfer (RAFT) polymerization, which was used for the study on coating modification, hydrolysis resistance, and dispersion performance of AIN powder. The study results show that, when using PVP macromolecular chain transfer agent (PVP-CTA) for the RAFT chain extension and polymerization in St/ITA binary system, the molecular weight increases linearly and the molecular weight distribution tends to decrease with the monomer conversion rate, which is in line with the activity-controlled characteristics of RAFT polymerization. The copolymer PVP-b-P(St/ITA) was used to for surface modification treatment of submicron AlN powder to generate esterification reaction, which was absorbed and bound to the powder surface. Hydrolysis resistance and dispersion experiments were conducted for modified powder, and the crystal phase and micro structure of modified powder were analyzed and observed through XRD, SEM, and TEM. It was found that copolymer modification had no effect on the powder crystal phase. A 8–21 nm passivation layer was coated on the surface, which can exist stably for 10 h in 60 °C water. Zeta potential and laser particle analyzer tests showed that modified powder featured excellent water-based slurry dispersion performance, and certain self-dispersing characteristics. The highest Zeta potential appeared in pH 6~7, and the particle granularity was distributed uniformly with the median particle diameter of 875 nm. The powder hydrolysis resistance and dispersion performance are significantly improved.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3