Light Increases Astaxanthin Absorbance in Acetone Solution through Isomerization Reactions

Author:

Virchenko OleksandrORCID,Stefánsson Tryggvi

Abstract

Astaxanthin quantitative analysis is prone to high variability between laboratories. This study aimed to assess the effect of light on the spectrometric and high-performance liquid chromatography (HPLC) measurements of astaxanthin. The experiment was performed on four Haematococcus pluvialis-derived astaxanthin-rich oleoresin samples with different carotenoid matrices that were analyzed by UV/Vis spectrometry and HPLC according to the United States Pharmacopoeia (USP) monograph. Each sample was dissolved in acetone in three types of flasks: amber glass wrapped with aluminium foil, uncovered amber glass, and transparent glass. Thus, the acetone solutions were either in light-proof flasks or exposed to ambient light. The measurements were taken within four hours (spectrometry) or three hours (HPLC) from the moment of oleoresin dissolution in acetone to investigate the dynamics of changes in the recorded values. The results confirm the logarithmic growth of astaxanthin absorbance by 8–11% (UV/Vis) and 7–17% (HPLC) after 3 h of light exposure. The changes were different in the samples with different carotenoid matrices; for instance, light had the least effect on the USP reference standard sample. The increase in absorbance was accompanied with the change of isomeric distribution, namely a reduction of 13Z and an increase of All-E and 9Z astaxanthin. The greater HPLC values’ elevation was related not only to the increase of astaxanthin absorbance, but also to light-dependent degradation of internal standard apocarotenal. The findings confirm a poor robustness of the conventional analytical procedure for astaxanthin quantitation and a necessity for method revision and harmonization to improve its reproducibility.

Funder

Algalif Iceland ehf.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3