Study of Ammonia Adsorption on Magnetite Surfaces with Molecular Dynamics Simulations

Author:

Ivanova Nikoleta1ORCID,Karastoyanov Vasil1,Betova Iva2ORCID,Bojinov Martin1ORCID

Affiliation:

1. Department of Physical Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria

2. Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Abstract

The present study proposes an atomistic molecular dynamics model system of a magnetite (Fe3O4) {111} surface. The effect of temperature on the adsorption process of ammonia (NH3) at low concentrations in the aqueous phase has been considered. The molecular dynamics simulations were carried out using the Clay force field (Clay FF) with a modification for the iron atoms in the NPT ensemble at a pressure of 90 bar. The considered system was heated in a temperature range from 293 to 473 K, and additional relaxations were performed at temperatures of interest. Within the scope of this study, the basic parameters of the magnetite surface were calculated and the distances between the ammonia molecules and the surface were determined. A general idea of the degree and rate of adsorption at specific temperatures was obtained. The calculation results were compared to the experimental data where possible and to other available simulations of adsorption processes on metal oxides.

Funder

National Recovery and Resilience Plan of the Republic of Bulgaria

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3