Application of Semiconductor Metal Oxide in Chemiresistive Methane Gas Sensor: Recent Developments and Future Perspectives

Author:

Fu Li12ORCID,You Shixi2,Li Guangjun2,Li Xingxing1,Fan Zengchang2

Affiliation:

1. Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

2. Research and Development Center, Siterwell Electronics Co., Ltd., Ningbo 315000, China

Abstract

The application of semiconductor metal oxides in chemiresistive methane gas sensors has seen significant progress in recent years, driven by their promising sensitivity, miniaturization potential, and cost-effectiveness. This paper presents a comprehensive review of recent developments and future perspectives in this field. The main findings highlight the advancements in material science, sensor fabrication techniques, and integration methods that have led to enhanced methane-sensing capabilities. Notably, the incorporation of noble metal dopants, nanostructuring, and hybrid materials has significantly improved sensitivity and selectivity. Furthermore, innovative sensor fabrication techniques, such as thin-film deposition and screen printing, have enabled cost-effective and scalable production. The challenges and limitations facing metal oxide-based methane sensors were identified, including issues with sensitivity, selectivity, operating temperature, long-term stability, and response times. To address these challenges, advanced material science techniques were explored, leading to novel metal oxide materials with unique properties. Design improvements, such as integrated heating elements for precise temperature control, were investigated to enhance sensor stability. Additionally, data processing algorithms and machine learning methods were employed to improve selectivity and mitigate baseline drift. The recent developments in semiconductor metal oxide-based chemiresistive methane gas sensors show promising potential for practical applications. The improvements in sensitivity, selectivity, and stability achieved through material innovations and design modifications pave the way for real-world deployment. The integration of machine learning and data processing techniques further enhances the reliability and accuracy of methane detection. However, challenges remain, and future research should focus on overcoming the limitations to fully unlock the capabilities of these sensors. Green manufacturing practices should also be explored to align with increasing environmental consciousness. Overall, the advances in this field open up new opportunities for efficient methane monitoring, leak prevention, and environmental protection.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3