Abstract
Oceans abound in resources of various kinds for R&D and for commercial applications. Monitoring and bioprospecting allow the identification of an increasing number of key natural resources. Macroalgae are essential elements of marine ecosystems as well as a natural resource influenced by dynamic environmental factors. They are not only nutritionally attractive but have also demonstrated potential health benefits such as antioxidant, antihypertensive, and anti-inflammatory activities. Several bioactive peptides have been observed following enzymatic hydrolysis of macroalgal proteins. In addition, significant differences in protein bioactivities and peptide extracts of wild and cultivated macroalgae have been highlighted, but the metabolic pathways giving rise to these bioactive molecules remain largely elusive. Surprisingly, the biochemistry that underlies the environmental stress tolerance of macroalgae has not been well investigated and remains poorly understood. Proteomic and functional genomic approaches based on identifying precursor proteins and bioactive peptides of macroalgae through integrated multi-omics analysis can give insights into their regulation as influenced by abiotic factors. These strategies allow evaluating the proteomics profile of regulation of macroalgae in response to different growth conditions as well as establishing a comparative transcriptome profiling targeting structural protein-coding genes. Elucidation of biochemical pathways in macroalgae could provide an innovative means of enhancing the protein quality of edible macroalgae. This could be ultimately viewed as a powerful way to drive the development of a tailored production and extraction of high value molecules. This review provides an overview of algal proteins and bioactive peptide characterization using proteomics and transcriptomic analyses.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献