Development of UPLC-MS/MS Method to Study the Pharmacokinetic Interaction between Sorafenib and Dapagliflozin in Rats

Author:

He Xueru,Li YingORCID,Ma Yinling,Fu Yuhao,Xun Xuejiao,Cui Yanjun,Dong Zhanjun

Abstract

Sorafenib (SOR), an inhibitor of multiple kinases, is a classic targeted drug for advanced hepatocellular carcinoma (HCC) which often coexists with type 2 diabetes mellitus (T2DM). Dapagliflozin (DAPA), a sodium–glucose cotransporter-2 inhibitor (SGLT2i), is widely used in patients with T2DM. Notably, co-administration of SOR with DAPA is common in clinical settings. Uridine diphosphate-glucuronosyltransferase family 1 member A9 (UGT1A9) is involved in the metabolism of SOR and dapagliflozin (DAPA), and SOR is the inhibitor of UGT1A1 and UGT1A9 (in vitro). Therefore, changes in UGT1A9 activity caused by SOR may lead to pharmacokinetic interactions between the two drugs. The objective of the current study was to develop an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of SOR and DAPA in plasma and to evaluate the effect of the co-administration of SOR and DAPA on their individual pharmacokinetic properties and the mechanism involved. The rats were divided into four groups: SOR (100 mg/kg) alone and co-administered with DAPA (1 mg/kg) for seven days, and DAPA (1 mg/kg) alone and co-administered with SOR (100 mg/kg) for seven days. Liquid–liquid extraction (LLE) was performed for plasma sample preparation, and the chromatographic separation was conducted on Waters XSelect HSS T3 column with a gradient elution of 0.1% formic acid and 5 mM ammonium acetate (Phase A) and acetonitrile (Phase B). The levels of Ugt1a7 messenger RNA (mRNA) were determined in rat liver and intestine using quantitative real-time polymerase chain reaction (qRT-PCR). The method was successfully applied to the study of pharmacokinetic interactions. DAPA caused a significant decrease in the maximum plasma concentrations (Cmax) and the area under the plasma concentration–time curves (AUC0–t) of SOR by 41.6% and 50.5%, respectively, while the apparent volume of distribution (Vz/F) and apparent clearance (CLz/F) significantly increased 2.85- and 1.98-fold, respectively. When co-administering DAPA with SOR, the AUC0–t and the elimination half-life (t1/2Z) of DAPA significantly increased 1.66- and 1.80-fold, respectively, whereas the CLz/F significantly decreased by 40%. Results from qRT-PCR showed that, compared with control, seven days of SOR pretreatment decreased Ugt1a7 expression in both liver and intestine tissue. In contrast, seven days of DAPA pretreatment decreased Ugt1a7 expression only in liver tissue. Therefore, pharmacokinetic interactions exist between long-term use of SOR with DAPA, and UGT1A9 may be the targets mediating the interaction. Active surveillance for the treatment outcomes and adverse reactions are required.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3