Investigating the Cardiovascular Benefits of Dapagliflozin: Vasodilatory Effect on Isolated Rat Coronary Arteries

Author:

Choi Sooyeon1,Haam Chae Eun1ORCID,Byeon Seonhee1,Oh Eun Yi1,Choi Soo-Kyoung1ORCID,Lee Young-Ho1

Affiliation:

1. Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul 03722, Republic of Korea

Abstract

Dapagliflozin, a sodium–glucose co-transporter 2 (SGLT2) inhibitor, is an antidiabetic medication that reduces blood glucose. Although it is well known that dapagliflozin has additional benefits beyond glycemic control, such as reducing blood pressure and lowering the risk of cardiovascular events, no sufficient research data are available on the direct effect of dapagliflozin on cardiovascular function. Thus, in this study, we investigated the direct vascular effect of dapagliflozin on isolated rat coronary arteries. The left descending coronary arteries of 13-week-old male Sprague Dawley rats were cut into segments 2–3 mm long and mounted in a multi-wire myography system to measure isometric tension. Dapagliflozin effectively reduced blood vessel constriction induced by U-46619 (500 nM) in coronary arteries regardless of the endothelium. Treatment with an eNOS inhibitor (L-NNA, 100 μM), sGC inhibitor (ODQ, 5 μM), or COX inhibitor (indomethacin, 3 μM) did not affect the vasodilation induced by dapagliflozin. The application of a Ca2+-activated K+ channel (KCa) blocker (TEA, 2 mM), voltage-dependent K+ channel (KV) blocker (4-AP, 2 mM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (3 μM), and inward-rectifier K+ channel (KIR) blocker (BaCl2, 30 μM) did not affect the dapagliflozin-induced vasodilation either. The treatment with dapagliflozin decreased contractile responses induced by the addition of Ca2+, which suggested that the extracellular Ca2+ influx was inhibited by dapagliflozin. Treatment with dapagliflozin decreased the phosphorylation level of the 20 kDa myosin light chain (MLC20) in vascular smooth muscle cells. In the present study, we found that dapagliflozin has a significant vasodilatory effect on rat coronary arteries. Our findings suggest a novel pharmacologic approach for the treatment of cardiovascular diseases in diabetic patients through the modulation of Ca2+ homeostasis via dapagliflozin administration.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3