Abstract
β-N-methylamino L-alanine (BMAA) is a neurotoxin linked to high incidences of neurodegenerative disease. The toxin, along with two of its common isomers, 2,4-diaminobuytric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG), is produced by multiple genera of cyanobacteria worldwide. Whilst there are many reports of locations and species of cyanobacteria associated with the production of BMAA during a bloom, there is a lack of information tracking changes in concentration across a single bloom event. This study aimed to measure the concentrations of BMAA and its isomers through the progression and end of a cyanobacteria bloom event using liquid chromatography-triple quadrupole-mass spectrometry. BMAA was detected in all samples analysed, with a decreasing trend observed as the bloom progressed. BMAA’s isomers were also detected in all samples, however, they did not follow the same decreasing pattern. This study highlights the potential for current sampling protocols that measure a single time point as representative of a bloom’s overall toxin content to underestimate BMAA concentration during a bloom event.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献