Early-Age Hydration Reaction and Strength Formation Mechanism of Solid Waste Silica Fume Modified Concrete

Author:

Luo TaoORCID,Hua ChengORCID,Sun QiangORCID,Tang Liyun,Yi Yu,Pan Xiaofeng

Abstract

Solid waste silica fume was used to replace fly ash by different ratios to study the early-age hydration reaction and strength formation mechanism of concrete. The change pattern of moisture content in different phases and micro morphological characteristics of concrete at early age were analyzed by low field nuclear magnetic resonance (LF-NMR) and scanning electron microscope (SEM). The results showed that the compressive strength of concrete was enhanced optimally when the replacement ratio of solid waste silica fume was 50%. The results of LF-NMR analysis showed that the water content of modified concrete increased with the increase of solid waste silica fume content. The compressive strength of concrete grew faster within the curing age of 7 d, which means the hydration process of concrete was also faster. The micro morphological characteristics obtained by SEM revealed that the concrete was densest internally when 50% fly ash was replaced by the solid waste silica fume, which was better than the other contents.

Funder

The Youth Innovation Team of Shaanxi Universities

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3